Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 244: 108001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199138

RESUMO

BACKGROUND: Fear of Falling (FOF) is common among community-dwelling older adults and is associated with increased fall-risk, reduced activity, and gait modifications. OBJECTIVE: In this cross-sectional study, we examined the relationships between FOF and gait quality. METHODS: Older adults (N=232; age 77±6; 65 % females) reported FOF by a single yes/no question. Gait quality was quantified as (1) harmonic ratio (smoothness) and other time-frequency spatiotemporal variables from triaxial accelerometry (Vertical-V, Mediolateral-ML, Anterior-Posterior -AP) during six-minute walk; (2) gait speed, step-time CoV (variability), and walk-ratio (step-length/cadence) on a 4-m instrumented walkway. Mann Whitney U-tests and Random forest classifier compared gait between those with and without FOF. Selected gait variables were used to build Support Vector Machine (SVM) classifier and performance was evaluated using AUC-ROC. RESULTS: Individuals with FOF had slower gait speed (103.66 ± 17.09 vs. 110.07 ± 14.83 cm/s), greater step time CoV (4.17 ± 1.66 vs. 3.72 ± 1.24 %), smaller walk-ratio (0.53 ± 0.08 vs. 0.56 ± 0.07 cm/steps/minute), smaller standard deviation V (0.15 ± 0.06 vs. 0.18 ± 0.09 m/s2), and smaller harmonic-ratio V (2.14 ± 0.73 vs. 2.38 ± 0.58), all p<.01. Linear SVM yielded an AUC-ROC of 67 % on test dataset, coefficient values being gait speed (-0.19), standard deviation V (-0.23), walk-ratio (-0.36), and smoothness V (-0.38) describing associations with presence of FOF. CONCLUSION: Older adults with FOF have reduced gait speed, acceleration adaptability, walk-ratio, and smoothness. Disrupted gait patterns during fear of falling could provide insights into psychosocial distress in older adults. Longitudinal studies are warranted.


Assuntos
Medo , Vida Independente , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Masculino , Medo/psicologia , Estudos Transversais , Marcha , Aceleração
2.
Neurorehabil Neural Repair ; 37(11-12): 810-822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975184

RESUMO

BACKGROUND: Walking patterns in stroke survivors are highly heterogeneous, which poses a challenge in systematizing treatment prescriptions for walking rehabilitation interventions. OBJECTIVES: We used bilateral spatiotemporal and force data during walking to create a multi-site research sample to: (1) identify clusters of walking behaviors in people post-stroke and neurotypical controls and (2) determine the generalizability of these walking clusters across different research sites. We hypothesized that participants post-stroke will have different walking impairments resulting in different clusters of walking behaviors, which are also different from control participants. METHODS: We gathered data from 81 post-stroke participants across 4 research sites and collected data from 31 control participants. Using sparse K-means clustering, we identified walking clusters based on 17 spatiotemporal and force variables. We analyzed the biomechanical features within each cluster to characterize cluster-specific walking behaviors. We also assessed the generalizability of the clusters using a leave-one-out approach. RESULTS: We identified 4 stroke clusters: a fast and asymmetric cluster, a moderate speed and asymmetric cluster, a slow cluster with frontal plane force asymmetries, and a slow and symmetric cluster. We also identified a moderate speed and symmetric gait cluster composed of controls and participants post-stroke. The moderate speed and asymmetric stroke cluster did not generalize across sites. CONCLUSIONS: Although post-stroke walking patterns are heterogenous, these patterns can be systematically classified into distinct clusters based on spatiotemporal and force data. Future interventions could target the key features that characterize each cluster to increase the efficacy of interventions to improve mobility in people post-stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Fenômenos Biomecânicos , Marcha , Caminhada , Velocidade de Caminhada
3.
J Neurophysiol ; 130(4): 1008-1014, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37701940

RESUMO

The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.


Assuntos
Marcha , Reflexo , Adulto , Humanos , Eletromiografia , Coluna Vertebral , Adaptação Fisiológica , Caminhada , Teste de Esforço
4.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37577644

RESUMO

Gait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel automaticity index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify gait automaticity. We validated the index in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. We found that as DT difficulty increases, more participants showed the anticipated decrease in automaticity as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function related to worse automaticity index, but not PFC activation or DT performance. In sum, the proposed index better quantified the differences in automaticity between tasks and individuals by providing a unified measure of gait automaticity that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.

5.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37645865

RESUMO

Previous work has shown that compared with young adults, older adults generalize their walking patterns more across environments that impose different motor demands (i.e., split-belt treadmill vs. overground). However, in this previous study, all participants walked at a speed that was more comfortable for older adults than young participants, which leads to the question of whether young adults would generalize more their walking patterns than older adults when exposed to faster speeds that are more comfortable for them. To address this question, we examined the interaction between healthy aging and walking speed on the generalization of a pattern learned on a split-belt treadmill (i.e., legs moving at different speeds) to overground. We hypothesized that walking speed during split-belt walking regulates the generalization of walking patterns in an age-specific manner. To this end, groups of young (<30 y/o) and older (65+ y/o) adults adapted their gait on a split-belt treadmill at either slower or faster walking speeds. We assessed the generalization of movements between the groups by quantifying their aftereffects during overground walking, where larger overground aftereffects represent more generalization, and zero aftereffects represent no generalization. We found an interaction between age and walking speed in the generalization of walking patterns. More specifically, older adults generalized more when adapted at slower speeds, whereas younger adults did so when adapted at faster speeds. These results suggest that comfortable walking speeds lead to more generalization of newly acquired motor patterns beyond the training contexts.

6.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37214916

RESUMO

Background: Walking patterns in stroke survivors are highly heterogeneous, which poses a challenge in systematizing treatment prescriptions for walking rehabilitation interventions. Objective: We used bilateral spatiotemporal and force data during walking to create a multi-site research sample to: 1) identify clusters of walking behaviors in people post-stroke and neurotypical controls, and 2) determine the generalizability of these walking clusters across different research sites. We hypothesized that participants post-stroke will have different walking impairments resulting in different clusters of walking behaviors, which are also different from control participants. Methods: We gathered data from 81 post-stroke participants across four research sites and collected data from 31 control participants. Using sparse K-means clustering, we identified walking clusters based on 17 spatiotemporal and force variables. We analyzed the biomechanical features within each cluster to characterize cluster-specific walking behaviors. We also assessed the generalizability of the clusters using a leave-one-out approach. Results: We identified four stroke clusters: a fast and asymmetric cluster, a moderate speed and asymmetric cluster, a slow cluster with frontal plane force asymmetries, and a slow and symmetric cluster. We also identified a moderate speed and symmetric gait cluster composed of controls and participants post-stroke. The moderate speed and asymmetric stroke cluster did not generalize across sites. Conclusions: Although post-stroke walking patterns are heterogenous, these patterns can be systematically classified into distinct clusters based on spatiotemporal and force data. Future interventions could target the key features that characterize each cluster to increase the efficacy of interventions to improve mobility in people post-stroke.

7.
Front Aging Neurosci ; 15: 1283376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274986

RESUMO

Introduction: Gait automaticity refers to the ability to walk with minimal recruitment of attentional networks typically mediated through the prefrontal cortex (PFC). Reduced gait automaticity (i.e., greater use of attentional resources during walking) is common with aging, contributing to an increased risk of falls and reduced quality of life. A common assessment of gait automaticity involves examining PFC activation using near-infrared spectroscopy (fNIRS) during dual-task (DT) paradigms, such as walking while performing a cognitive task. However, neither PFC activity nor task performance in isolation measures automaticity accurately. For example, greater PFC activation could be interpreted as worse gait automaticity when accompanied by poorer DT performance, but when accompanied by better DT performance, it could be seen as successful compensation. Thus, there is a need to incorporate behavioral performance and PFC measurements for a more comprehensive evaluation of gait automaticity. To address this need, we propose a novel attentional gait index as an analytical approach that combines changes in PFC activity with changes in DT performance to quantify automaticity, where a reduction in automaticity will be reflected as an increased need for attentional gait control (i.e., larger index). Methods: The index was validated in 173 participants (≥65 y/o) who completed DTs with two levels of difficulty while PFC activation was recorded with fNIRS. The two DTs consisted of reciting every other letter of the alphabet while walking over either an even or uneven surface. Results: As DT difficulty increases, more participants showed the anticipated increase in the attentional control of gait (i.e., less automaticity) as measured by the novel index compared to PFC activation. Furthermore, when comparing across individuals, lower cognitive function was related to higher attentional gait index, but not PFC activation or DT performance. Conclusion: The proposed index better quantified the differences in attentional control of gait between tasks and individuals by providing a unified measure that includes both brain activation and performance. This new approach opens exciting possibilities to assess participant-specific deficits and compare rehabilitation outcomes from gait automaticity interventions.

8.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35346963

RESUMO

Humans can perform complex movements with speed and agility in the face of constantly changing task demands. To accomplish this, motor plans are adapted to account for errors in our movements because of changes in our body (e.g., growth or injury) or in the environment (e.g., walking on sand vs ice). It has been suggested that adaptation that occurs in response to changes in the state of our body will generalize across different movement contexts and environments, whereas adaptation that occurs with alterations in the external environment will be context-specific. Here, we asked whether the ability to form generalizable versus context-specific motor memories develops during childhood. We performed a cross-sectional study of context-specific locomotor adaptation in 35 children (3-18 years old) and 7 adults (19-31 years old). Subjects first adapted their gait and learned a new walking pattern on a split-belt treadmill, which has two belts that move each leg at a different speed. Then, subjects walked overground to assess the generalization of the adapted walking pattern across different environments. Our results show that the generalization of treadmill after-effects to overground walking decreases as subjects' age increases, indicating that age and experience are critical factors regulating the specificity of motor learning. Our results suggest that although basic locomotor patterns are established by two years of age, brain networks required for context-specific locomotor learning are still being developed throughout youth.


Assuntos
Adaptação Fisiológica , Caminhada , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Marcha/fisiologia , Humanos , Aprendizagem/fisiologia , Caminhada/fisiologia , Adulto Jovem
9.
Front Aging Neurosci ; 13: 610359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986654

RESUMO

Aging causes perseveration (difficulty to switch between actions) in motor and cognitive tasks, suggesting that the same neural processes could govern these abilities in older adults. To test this, we evaluated the relation between independently measured motor and cognitive perseveration in young (21.4 ± 3.7 y/o) and older participants (76.5 ± 2.9 y/o). Motor perseveration was measured with a locomotor task in which participants had to transition between distinct walking patterns. Cognitive perseveration was measured with a card matching task in which participants had to switch between distinct matching rules. We found that perseveration in the cognitive and motor domains were positively related in older, but not younger individuals, such that participants exhibiting greater perseveration in the motor task also perseverated more in the cognitive task. Additionally, exposure reduces motor perseveration: older adults who had practiced the motor task could transition between walking patterns as proficiently as naïve, young individuals. Our results suggest an overlap in neural processes governing cognitive and motor perseveration with aging and that exposure can counteract the age-related motor perseveration.

10.
J Neuroeng Rehabil ; 17(1): 119, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847596

RESUMO

BACKGROUND: Asymmetric gait post-stroke is associated with decreased mobility, yet individuals with chronic stroke often self-select an asymmetric gait despite being capable of walking more symmetrically. The purpose of this study was to test whether self-selected asymmetry could be explained by energy cost minimization. We hypothesized that short-term deviations from self-selected asymmetry would result in increased metabolic energy consumption, despite being associated with long-term rehabilitation benefits. Other studies have found no difference in metabolic rate across different levels of enforced asymmetry among individuals with chronic stroke, but used methods that left some uncertainty to be resolved. METHODS: In this study, ten individuals with chronic stroke walked on a treadmill at participant-specific speeds while voluntarily altering step length asymmetry. We included only participants with clinically relevant self-selected asymmetry who were able to significantly alter asymmetry using visual biofeedback. Conditions included targeting zero asymmetry, self-selected asymmetry, and double the self-selected asymmetry. Participants were trained with the biofeedback system in one session, and data were collected in three subsequent sessions with repeated measures. Self-selected asymmetry was consistent across sessions. A similar protocol was conducted among unimpaired participants. RESULTS: Participants with chronic stroke substantially altered step length asymmetry using biofeedback, but this did not affect metabolic rate (ANOVA, p = 0.68). In unimpaired participants, self-selected step length asymmetry was close to zero and corresponded to the lowest metabolic energy cost (ANOVA, p = 6e-4). While the symmetry of unimpaired gait may be the result of energy cost minimization, self-selected step length asymmetry in individuals with chronic stroke cannot be explained by a similar least-effort drive. CONCLUSIONS: Interventions that encourage changes in step length asymmetry by manipulating metabolic energy consumption may be effective because these therapies would not have to overcome a metabolic penalty for altering asymmetry.


Assuntos
Metabolismo Energético/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Biorretroalimentação Psicológica , Feminino , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações
11.
J Neuroeng Rehabil ; 17(1): 69, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493440

RESUMO

BACKGROUND: Promising studies have shown that the gait symmetry of individuals with hemiparesis due to brain lesions, such as stroke, can improve through motor adaptation protocols forcing patients to use their affected limb more. However, little is known about how to facilitate this process. Here we asked if increasing propulsion demands during split-belt walking (i.e., legs moving at different speeds) leads to more motor adaptation and more symmetric gait in survivors of a stroke, as we previously observed in subjects without neurological disorders. METHODS: We investigated the effect of propulsion forces on locomotor adaptation during and after split-belt walking in the asymmetric motor system post-stroke. To test this, 12 subjects in the chronic phase post-stroke experienced a split-belt protocol in a flat and incline session so as to contrast the effects of two different propulsion demands. Step length asymmetry and propulsion forces were used to compare the motor behavior between the two sessions because these are clinically relevant measures that are altered by split-belt walking. RESULTS: The incline session resulted in more symmetric step lengths during late split-belt walking and larger after-effects following split-belt walking. In both testing sessions, subjects who have had a stroke adapted to regain speed and slope-specific leg orientations similarly to young, intact adults. Importantly, leg orientations, which were set by kinetic demands, during baseline walking were predictive of those achieved during split-belt walking, which in turn predicted each individual's post-adaptation behavior. These results are relevant because they provide evidence that survivors of a stroke can generate the leg-specific forces to walk more symmetrically, but also because we provide insight into factors underlying the therapeutic effect of split-belt walking. CONCLUSIONS: Individuals post-stroke at a chronic stage can adapt more during split-belt walking and have greater after-effects when propulsion demands are augmented by inclining the treadmill surface. Our results are promising since they suggest that increasing propulsion demands during paradigms that force patients to use their paretic side more could correct gait asymmetries post-stroke more effectively.


Assuntos
Adaptação Fisiológica/fisiologia , Teste de Esforço/métodos , Transtornos Neurológicos da Marcha/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Locomoção/fisiologia , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Paresia/reabilitação
12.
J Neurophysiol ; 123(5): 1838-1848, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32233897

RESUMO

Little is known about the impact of attention during motor adaptation tasks on how movements adapted in one context generalize to another. We investigated this by manipulating subjects' attention to their movements while exposing them to split-belt walking (i.e., legs moving at different speeds), which is known to induce locomotor adaptation. We hypothesized that reducing subjects' attention to their movements by distracting them as they adapted their walking pattern would facilitate the generalization of recalibrated movements beyond the training environment. We reasoned that awareness of the novel split-belt condition could be used to consciously contextualize movements to that particular situation. To test this hypothesis, young adults adapted their gait on a split-belt treadmill while they observed visual information that either distracted them or made them aware of the belt's speed difference. We assessed adaptation and aftereffects of spatial and temporal gait features known to adapt and generalize differently in different environments. We found that all groups adapted similarly by reaching the same steady-state values for all gait parameters at the end of the adaptation period. In contrast, both groups with altered attention to the split-belts environment (distraction and awareness groups) generalized their movements from the treadmill to overground more than controls, who walked without altered attention. This was specifically observed in the generalization of step time (temporal gait feature), which might be less susceptible to online corrections during walking overground. These results suggest that altering attention to one's movements during sensorimotor adaptation facilitates the generalization of movement recalibration.NEW & NOTEWORTHY Little is known about how attention affects the generalization of motor recalibration induced by sensorimotor adaptation paradigms. We showed that altering attention to movements on a split-belt treadmill led to greater adaptation effects in subjects walking overground. Thus our results suggest that altering patients' attention to their actions during sensorimotor adaptation protocols could lead to greater generalization of corrected movements when moving without the training device.


Assuntos
Adaptação Fisiológica/fisiologia , Atenção/fisiologia , Fenômenos Biomecânicos/fisiologia , Função Executiva/fisiologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Marcha/fisiologia , Humanos , Masculino , Adulto Jovem
13.
Front Neurosci ; 14: 174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210750

RESUMO

The motor system has the flexibility to update motor plans according to systematic changes in the environment or the body. This capacity is studied in the laboratory through sensorimotor adaptation paradigms imposing sustained and predictable motor demands specific to the task at hand. However, these studies are tied to the laboratory setting. Thus, we asked if a portable device could be used to elicit locomotor adaptation outside the laboratory. To this end, we tested the extent to which a pair of motorized shoes could induce similar locomotor adaptation to split-belt walking, which is a well-established sensorimotor adaptation paradigm in locomotion. We specifically compared the adaptation effects (i.e. after-effects) between two groups of young, healthy participants walking with the legs moving at different speeds by either a split-belt treadmill or a pair of motorized shoes. The speeds at which the legs moved in the split-belt group was set by the belt speed under each foot, whereas in the motorized shoes group were set by the combined effect of the actuated shoes and the belts' moving at the same speed. We found that the adaptation of joint motions and measures of spatial and temporal asymmetry, which are commonly used to quantify sensorimotor adaptation in locomotion, were indistinguishable between groups. We only found small differences in the joint angle kinematics during baseline walking between the groups - potentially due to the weight and height of the motorized shoes. Our results indicate that robust sensorimotor adaptation in walking can be induced with a paired of motorized shoes, opening the exciting possibility to study sensorimotor adaptation during more realistic situations outside the laboratory.

14.
eNeuro ; 7(1)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32001549

RESUMO

Human movements are flexible as they continuously adapt to changes in the environment. The recalibration of corrective responses to sustained perturbations (e.g., constant force) altering one's movement contributes to this flexibility. We asked whether the recalibration of corrective actions involve cerebral structures using stroke as a disease model. We characterized changes in muscle activity in stroke survivors and control subjects before, during, and after walking on a split-belt treadmill moving the legs at different speeds. The recalibration of corrective muscle activity was comparable between stroke survivors and control subjects, which was unexpected given the known deficits in feedback responses poststroke. Also, the intact recalibration in stroke survivors contrasted their limited ability to adjust their muscle activity during steady-state split-belt walking. Our results suggest that the recalibration and execution of motor commands are partially dissociable: cerebral lesions interfere with the execution, but not the recalibration, of motor commands on novel movement demands.


Assuntos
Acidente Vascular Cerebral , Caminhada , Adaptação Fisiológica , Teste de Esforço , Humanos , Perna (Membro)
15.
Sci Rep ; 9(1): 16442, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712598

RESUMO

Successful motor control requires accurate estimation of our body in space for planning, executing, and evaluating the outcome of our actions. It has been shown that the estimation of limb position is susceptible to motor adaptation. However, a similar effect has not been found in locomotion, possibly due to how it was tested. We hypothesized that split-belt walking with the legs moving at different speeds changes the estimation of the legs' position when taking a step. Thus, we assessed young subjects' perception of step length (i.e., inter-feet distance at foot landing) when they moved their legs (active perception) or when the legs were moved by the experimenter (passive perception). We found that the active perception of step length was substantially altered following split-belt walking, whereas passive perception exhibited minor changes. This suggests that split-belt walking induced the adaptation of efferent signals, without altering sensory signals. We also found that active perceptual shifts were sensitive to how they were tested: they were most salient in the trailing leg and at short step lengths. Our results suggest that split-belt walking could modulate the deficient perception of step length post-stroke, which may contribute to gait asymmetries impairing patients' mobility.


Assuntos
Desempenho Psicomotor , Percepção Espacial , Caminhada , Adulto , Teste de Esforço , Feminino , Humanos , Locomoção , Masculino , Adulto Jovem
16.
Front Hum Neurosci ; 13: 207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333429

RESUMO

Split-belt treadmills that move the legs at different speeds are thought to update internal representations of the environment, such that this novel condition generates a new locomotor pattern with distinct spatio-temporal features compared to those of regular walking. It is unclear the degree to which such recalibration of movements in the spatial and temporal domains is interdependent. In this study, we explicitly altered subjects' limb motion in either space or time during split-belt walking to determine its impact on the adaptation of the other domain. Interestingly, we observed that motor adaptation in the spatial domain was susceptible to altering the temporal domain, whereas motor adaptation in the temporal domain was resilient to modifying the spatial domain. This non-reciprocal relation suggests a hierarchical organization such that the control of timing in locomotion has an effect on the control of limb position. This is of translational interest because clinical populations often have a greater deficit in one domain compared to the other. Our results suggest that explicit changes to temporal deficits cannot occur without modifying the spatial control of the limb.

17.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31043463

RESUMO

Recent studies suggest that planned and corrective actions are recalibrated during some forms of motor adaptation. However, corrective (also known as reactive) movements in human locomotion are thought to simply reflect sudden environmental changes independently from sensorimotor recalibration. Thus, we asked whether corrective responses can indicate the motor system's adapted state following prolonged exposure to a novel walking situation inducing sensorimotor adaptation. We recorded electromyographic (EMG) signals bilaterally on 15 leg muscles before, during, and after split-belts walking (i.e., novel walking situation), in which the legs move at different speeds. We exploited the rapid temporal dynamics of corrective responses upon unexpected speed transitions to isolate them from the overall motor output. We found that corrective muscle activity was structurally different following short versus long exposures to split-belts walking. Only after a long exposure, removal of the novel environment elicited corrective muscle patterns that matched those expected in response to a perturbation opposite to the one originally experienced. This indicated that individuals who recalibrated their motor system adopted split-belts environment as their new "normal" and transitioning back to the original walking environment causes subjects to react as if it was novel to them. Interestingly, this learning declined with age, but steady state modulation of muscle activity during split-belts walking did not, suggesting potentially different neural mechanisms underlying these motor patterns. Taken together, our results show that corrective motor commands reflect the adapted state of the motor system, which is less flexible as we age.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Aprendizagem/fisiologia , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Idoso , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
18.
Front Physiol ; 10: 60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800072

RESUMO

There is an interest to identify factors facilitating locomotor adaptation induced by split-belt walking (i.e., legs moving at different speeds) because of its clinical potential. We hypothesized that augmenting braking forces, rather than propulsion forces, experienced at the feet would increase locomotor adaptation during and after split-belt walking. To test this, forces were modulated during split-belt walking with distinct slopes: incline (larger propulsion than braking), decline (larger braking than propulsion), and flat (similar propulsion and braking). Step length asymmetry was compared between groups because it is a clinically relevant measure robustly adapted on split-belt treadmills. Unexpectedly, the group with larger propulsion demands (i.e., the incline group) changed their gait the most during adaptation, reached their final adapted state more quickly, and had larger after-effects when the split-belt perturbation was removed. We also found that subjects who experienced larger disruptions of propulsion forces in early adaptation exhibited greater after-effects, which further highlights the catalytic role of propulsion forces on locomotor adaptation. The relevance of mechanical demands on shaping our movements was also indicated by the steady state split-belt behavior, during which each group recovered their baseline leg orientation to meet leg-specific force demands at the expense of step length symmetry. Notably, the flat group was nearly symmetric, whereas the incline and decline group overshot and undershot step length symmetry, respectively. Taken together, our results indicate that forces propelling the body facilitate gait changes during and after split-belt walking. Therefore, the particular propulsion demands to walk on a split-belt treadmill might explain the gait symmetry improvements in hemiparetic gait following split-belt training.

19.
Neurorehabil Neural Repair ; 32(6-7): 655-666, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29954244

RESUMO

Defective muscle coordination for balance recovery may contribute to stroke survivors' propensity for falling. Thus, we investigated deficits in muscle coordination for postural control and their association to body sway following balance perturbations in people with stroke. Specifically, we compared the automatic postural responses of 8 leg and trunk muscles recorded bilaterally in unimpaired individuals and those with mild to moderate impairments after unilateral supratentorial lesions (>6 months). These responses were elicited by unexpected floor translations in 12 directions. We extracted motor modules (ie, muscle synergies) for each leg using nonnegative matrix factorization. We also determined the magnitude of perturbation-induced body sway using a single-link inverted pendulum model. Whereas the number of motor modules for balance was not affected by stroke, those formed by muscles with long latency responses were replaced by atypically structured paretic motor modules (atypical muscle groupings), which hints at direct cerebral involvement in long-latency feedback responses. Other paretic motor modules had intact structure but were poorly recruited, which is indicative of indirect cerebral control of balance. Importantly, these paretic deficits were strongly associated with postural instability in the preferred activation direction of the impaired motor modules. Finally, these deficiencies were heterogeneously distributed across stroke survivors with lesions in distinct locations, suggesting that different cerebral substrates may contribute to balance control. In conclusion, muscle coordination deficits in the paretic limb of stroke survivors result in direction-specific postural instability, which highlights the importance of targeted interventions to address patient-specific balance impairments.


Assuntos
Músculo Esquelético/fisiopatologia , Paresia/fisiopatologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Acidente Vascular Cerebral/complicações
20.
Front Aging Neurosci ; 9: 40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321188

RESUMO

Healthy aging impairs the ability to adapt movements to novel situations and to switch choices according to the context in cognitive tasks, indicating resistance to changes in motor and cognitive behaviors. Here we examined if this lack of "flexibility" in old subjects observed in motor and cognitive domains were related. To this end, we evaluated subjects' performance in a motor task that required switching walking patterns and its relation to performance in a cognitive switching task. Specifically, a group of old (>73 years old) and young subjects learned a new locomotor pattern on a split-belt treadmill, which drives the legs at different speeds. In both groups, we assessed the ability to disengage the walking pattern learned on the treadmill when walking overground. Then, we determined if this motor context-specificity was related to subjects' cognitive ability to switch actions in a set-shift task. Motor and cognitive behaviors were tested twice on separate visits to determine if age-related differences were maintained with exposure. Consistent with previous studies, we found that old adults adapted slower and had deficits in retention. Most importantly, we found that older subjects could not switch locomotor patterns when transitioning across walking contexts. Interestingly, cognitive switching performance was inversely related to subjects' ability to switch walking patterns. Thus, cognitive mediated switching interfered with locomotor switching. These findings were maintained across testing sessions. Our results suggest that distinct neural substrates mediate motor and cognitive action selection, and that these processes interfere with each other as we age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...